- *73*-

§ 2.6. Le nombre C.

Proposition. Soif
$$(x_n): x_0 = 1$$
, $x_n = (l + \frac{1}{n})^n \forall n > l$; $(y_n): y_0 = 1$, $y_n = 1 + \frac{1}{4!} + \frac{1}{2!} + \dots + \frac{1}{n!} \forall n > 1$

Alors (1) $x_n \leq y_n \quad \forall n \in \mathbb{N}$
(2) $y_n \leq 3 \quad \forall n \in \mathbb{N}$
(3) $(y_n) \land \quad \forall n \in \mathbb{N}$

Proposition. (1) $x_0 \leq y_0$; $x_n = (l + \frac{1}{n})^n = 1 + {n \choose n} \frac{1}{n} + {n \choose 2} {n \choose n}^2 + \dots + {n \choose k} {n \choose k}^k + \dots + {n \choose k} {n \choose n}^k$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = l \neq 3$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = l \neq 3$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = l \neq 3$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = l \neq 3$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = l \neq 3$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = l \neq 3$

$$(x_n) \land \quad \forall n \in \mathbb{N}$$

Proposition. Soif $(x_n): x_n = (l + \frac{1}{n}) \land x_n = (l + \frac{1}$

$$\frac{\text{Déf}}{\text{h} \to \infty} \left(1 + \frac{1}{n} \right)^n \stackrel{\text{déf}}{=} e$$

Remarque. lim yn = l [DZ, §2.4.3, 2.44]

C = 2.718281828459045235360287...

Calcul des limites.

1.
$$\lim_{n\to\infty} \frac{1}{n^p} = 0$$
 pour tout $p > 0$.

2. Soient
$$x_n = a_p n^p + \ldots + a_0$$
 et $y_n = b_q n^q + \ldots + b_0$ deux suite polynômiales telles que $a_p > 0, b_q > 0$. Alors:

$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = 0, \quad \text{si } p < q$$

$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \frac{a_p}{b_q}, \quad \text{si } p = q$$

$$\lim_{n\to\infty} \left(\frac{x_n}{y_n}\right) = \infty, \quad \text{si } p > q$$

3.
$$\lim_{n \to \infty} \sqrt[n]{a} = 1$$
 pour tout $a > 0$.

Cours
$$\begin{array}{l}
\text{3. } \lim_{n\to\infty}\sqrt[n]{a}=1 \text{ pour tout } a>0. \\
\text{4. La suite géométrique } (a_0r^n), \ a_0, r\in\mathbb{R}, \text{ converge vers la limite } \lim_{n\to\infty}a_0r^n=0, \text{ si } |r|<1, \text{ et diverge si } |r|>1. \\
\text{5. } \lim_{n\to\infty}\frac{p^n}{n!}=0 \text{ pour tout } p>0.
\end{array}$$

5.
$$\lim_{n \to \infty} \frac{p^n}{n!} = 0 \text{ pour tout } p > 0.$$

6.
$$\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$$
. Cours du 20 octobre

7.
$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1}.$$

$$8. \lim_{n \to \infty} \frac{n!}{n^n} = 0.$$

7.
$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1}.$$
8.
$$\lim_{n \to \infty} \frac{n!}{n^n} = 0.$$
9.
$$\lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}} = 1.$$

10.
$$\lim_{n \to \infty} \sin\left(\frac{1}{n}\right) = 0.$$

Suites definies par récurrence.

Soit $x_0 = a \in \mathbb{R}$, et $x_{n+1} = g(x_n)$ où $g: \mathbb{R} \rightarrow \mathbb{R}$ rune fonction. Questions: convergence; si la suite converge, trouver la limite. $g(x) = 5 + \frac{6}{x}$

$$E \times 1$$
. $X_0 = 1$; $X_{n+1} = 5 + \frac{6}{X_n} = 5 + \frac{6}{1} = 11$; $X_2 = 5 + \frac{6}{11} = 11$

(1) Supposons que lim Xn = l ≠ O. Alors
$$\frac{1}{X_n} \xrightarrow{n \to \infty} \frac{1}{e}$$

=> on obtient l'équation pour l:
$$l = 5 + \frac{6}{\ell} => \ell^2 - 5\ell - 6 = 0$$
=> $\ell = \frac{5 \pm \sqrt{25 + 24}}{2} = \frac{5 \pm 7}{2} => \ell = 6, \ell = -1.$

(2)
$$\frac{X_{n} > 5}{Alors}$$
 $\frac{1}{5}$ $\frac{1}{5}$

(3)
$$|X_{n+1} - \ell| = |f + \frac{6}{x_n} - (f + \frac{6}{\ell})| = |\frac{6}{x_n} - \frac{6}{\ell}| = \frac{6/\ell - x_n}{|x_n| \cdot |\ell|} < \frac{6}{25} |\ell - x_n| < (\frac{6}{25})^2 |\ell - x_{n+1}| < \dots$$

$$= > 0 \le |X_{n+1} - \ell| < (\frac{6}{25})^n |\ell - x_1|$$

h-so suite géométrique avec
$$\Gamma = \frac{6}{25} < 1$$

=> par les 2 gendarmes, on a
$$\lim_{n\to\infty} |X_{n+1}-\ell| = 0 \Rightarrow \lim_{n\to\infty} (X_{n+1}-\ell) = 0$$

$$=>$$
 $\lim_{h\to\infty} x_h = 6$

Proposition (Récurrence linéceire). Soit $a_0 \in \mathbb{R}$, $a_{n+1} = g a_n + b$, où $g, b \in \mathbb{R}$. Allors (1) Si $|q| \le 1 \Rightarrow (a_n)$ converge vers $\lim_{n \to \infty} a_n = \frac{6}{1-q}$ (2) Si $|q| > 1 \Rightarrow (a_n)$ diverge sauf si (a_n) est rene y=g(x) Suite constante. <u>Dém:</u> (1) Supposons que (an) converge => l'équation pour (Xn) converge 19/41 la limite est $l = gl + b \Rightarrow l = \frac{b}{1-g}$ Convergence: $(|g(< l) : \forall h \ge 1 \text{ on } a:$ $0 \le |\alpha_{n+1}-\ell| = |\alpha_n+\beta_n-\alpha_n+\beta_n| = |\alpha_n-\ell| = |\alpha_n-\ell| = |\alpha_n-\ell|$ $= --|\alpha_n| + |\alpha_n-\ell| = |\alpha_n-\ell| = |\alpha_n-\ell|$ $= --|\alpha_n-\ell| = |\alpha_n-\ell|$ $= --|\alpha_n-\ell| = |\alpha_n-\ell|$ $= --|\alpha_n-\ell|$ $= --|\alpha_n-\ell| = |\alpha_n-\ell|$ $= --|\alpha_n-\ell|$ $= --|\alpha_n-\ell|$ = --(3) $q=1 \Rightarrow a_{n+1}=a_{n+}b \Rightarrow a_n=a_{0+}nb$ suite arithmétique; si $b\neq 0 \Rightarrow$ divergente. S; $b=0 \Rightarrow$ $a_n=a_0 \forall n\in \mathbb{N}$. (4) q=-1 => an+1 =-an+6 => ao=a2=a2k +keN; a,=-ao+6=a3= =a2k+1 +keN => (a_n) diverge sauf si $a_0 = -a_0 + b = a_0 = \frac{b}{2} = a_n = \frac{b}{2}$ $\forall n \in \mathbb{N}$.

<u>Proposition</u> Si $x_0 \in \mathbb{R}$, $x_{n+1} = g(x_n)$ et $g: E \to E \subset \mathbb{R}$ telle que (1) $\exists m, M \in \mathbb{R}$: $m \subseteq g(x) \subseteq M$ $\forall x \in \mathbb{E}$ (2) est croissante: $\forall x_1, x_2 \in \mathbb{E}$: $x_i \subseteq x_2 => g(x_i) \subseteq g(x_2)$. Alors la suite (X_n) $X_{n+1} = g(X_n)$ est bornée et monotone => convergente (Série 6)Remarque. 5i (2) est remplacé par $X_1 \le X_2 = 7g(X_1) \ge g(X_2)$ (quest décroissante) => alors (X_n) n'est pas monotone! (mais elle peut être convergente) $\pm x^2$. $x_{n+1} = 5 - \frac{6}{x_n}$, $x_0 = 4 = 7g(x) = 5 - \frac{6}{x}$ est croissante, x > 0 $X_0 = 4$, $X_1 = 5 - \frac{6}{4} = \frac{7}{2} (X_0 \cdot Si \times_{n+1} (X_n =) g(X_{n+1}) (g(X_n) =) \times_{n+2} (X_{n+1} =) (X_n) \downarrow par réceirrence . <math>\forall n \in \mathbb{N}$ $S_i \times 3 = g(x) = 5 - \frac{6}{x_{32}} > 5 - 2 = 3 = \chi_0 = 4 > 3 = \chi_1 > 3 = \chi_2 > 3$ => Xn>3 Vn EN => (Xn) est minorée par 3, (Xn) V => 3 lim Xn > 3. L'équation pour la limite: $l = 5 - \frac{6}{0} = > 4$ $\ell' - 5\ell + 6 = 0 \Rightarrow \ell = \frac{5 \pm \sqrt{25 - 24}}{2} = 3; 2$ puisque $(x_n) \ge 3 \forall n \in \mathbb{N} \Rightarrow \lim_{n \to \infty} x_n = 3$

```
Quelques méthodes pour étudier les suites dépinies par récurrence.
   (1) Trouver les candidats pour la limite en supposant qu'elle existe.
Si l'équation n'admet pas de solution => la suite diverge.
(2) Étudier la convergence: (Faire un graphique)
     (a) Récurrence linéaire : X_{n+1} = gX_n + b = >
S_i | g| < 1 \qquad lim X_n = \frac{b}{i-g}
S_i | g| > 1 \qquad (x_n) \text{ diverge sauf } S_i | X_0 = \frac{b}{i-g} \text{ (suite constante)}
S_i | g| = 1 \qquad (x_n) \text{ diverge sauf } S_i | (x_n) \text{ ust constante}.
(b) S_i | X_{n+1} = g(X_n) \text{ avec } g(x) \text{ croissante} \Rightarrow ba \text{ suite ust monotone}.
S_i | X_0 < X_i \Rightarrow (x_n)^{\Lambda} \Rightarrow \text{essayer } de \text{ démontrer que } (x_n) \text{ est majorée} \\ S_i | X_0 > X_1 \Rightarrow (x_n)^{\Lambda} \Rightarrow \text{essayer } de \text{ démontrer que } (x_n) \text{ est majorée} \\ S_i | X_0 > X_1 \Rightarrow (x_n)^{\Lambda} \Rightarrow \text{essayer } de \text{ démontrer que } (x_n) \text{ est minorée} 
(c) Proposition. Si (x_n) et (a_n) deux suites: 0 \le a_n \le 1 \forall n \in \mathbb{N} et \exists l \in \mathbb{R}: (x_{n+1}-l) = a_n(x_n-l). Alors (x_n) converge (Serie 5).
    (d) X_{n+1} = g(X_n); g(x) n'est ni linéaire, ni croissante =>
                                 Si | Xn+1 - e| & Bn | Xn-e| et O < Bn < P < 1

=> Xn converge et lim Xn = e (Ex 1).
         (e) Démontrer que (xn) est une suite de Cauchy (à voir plus tourd).
                                                                                                              => (Xn) est convergente [DZ Ex. 2.7.3]
```

```
$2.8. Sous-suites. Suites de Cauchy.
```

Déf Une sous-suite d'une suite (an) est une suite $k \rightarrow \alpha_{n_K}$, où $k \rightarrow n_K$ est une suite strictement croissante de nombres naturels:

 $\angle X$ - $Q_{N} = (-1)^{N} \quad \forall_{N} \in \mathbb{N} = 0$ $\Rightarrow Q_{2N} = (-1)^{2k} = 1 \Rightarrow \lim_{k \to \infty} Q_{2k} = 1$ $Q_{2k+1} = (-1)^{4k+1} = -1 => \lim_{k \to \infty} a_{2k+1} = -1$

Proposition. (convergence d'une sous-suite).

Si lim $a_n = l = > toute sous-suite (a_{n_k})$ converge aussi vers l.

Dém: Soit E>O =>] no EN : Huzno => (an-l) E E.

Donc Hx>no => nx>x>no => |anx-l| = E => lim anx = l.

Théorème de Bolzano-Weierstrass. Dans fonte suite bornée il existe une sous-suite convergente.

Idée: Jm, M & R: m < (an) < M => On divise l'intervalle [m, M] par 2

On retient la moitié contenant un nombre infini d'elements de (an).

The Puis on recommence. La longueur des intervalles = $\frac{M-m}{2^n} \xrightarrow[n \to \infty]{}$

En choisissant un element dans chaque intervalle plus loin dans la suite, on obtient une sous-suite convergente.